Mid-Infrared Optical Parametric Generation in CdSiP₂

O. Chalus,1 P. G. Schunemann,2 K. T. Zawilski,2 J. Biegert,1,3,4 and M. Ebrahim-Zadeh1,3

1ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
2BAE Systems, Inc., MER15-1813, P.O. Box 868, Nashua, New Hampshire 03061-0868, USA
3Institucio Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain
4Department of Physics and Astronomy, University of New Mexico, 800 Yale Blvd, Albuquerque, New Mexico 87131-0001, USA
e-mail: majid.brahim@icfo.es

Abstract: We report parametric generation of near- and mid-infrared picosecond pulses at 100 kHz in CdSiP₂ pumped at 1.064 µm, providing 154 mW of idler at 6.204 µm and 1.16 W of signal at 1.282 µm.

Cadmium silicon phosphide, CdSiP₂ (CSP) [1], is a recently discovered nonlinear material which offers unique properties for parametric down-conversion into the mid-IR. It offers a transparency above ~6.5 µm and a noncritical phase-matching (NCPM) capability with an effective nonlinear coefficient as high as \(d_{eff} = d_{36} = 84.5 \text{ pm/V}\). It has a band-gap well below 1 µm, which permits pumping at 1.064 µm, and under type I (\(e\rightarrow\omega\)) parametric generation with NCPM can provide an idler wavelength beyond 6 µm, a spectral range of great interest for medical applications. Here, we report efficient generation of picosecond pulses in near- and mid-IR in CSP at 100 kHz using single-pass parametric generation (OPG) pumped by a mode-locked Nd:YVO₄ laser at 1.064 µm. We demonstrate an average signal power of 1.16 W at 1.282 µm and idler power of 154 mW at 6.204 µm for 6.1 W of pump power.

The pump source is an amplified mode-locked Nd:YVO₄ laser at 1.0642 µm. It can deliver up to 40 W of average power at 100 kHz with a pulse energy of 400 µJ. The pump beam is collimated to a ~500 µm diameter before the crystal. Pumping is single-pass. The CSP crystal was cut at \(\theta=90^°, \phi=45^°\) for type I (\(e\rightarrow\omega\)) interaction with a length of 8 mm and an aperture of 6.75 x 6 mm (along the \(c\)-axis). Both crystal faces were AR-coated for the pump, signal and idler wavelengths.

We observed OPG output at 1.1 W of pump, corresponding to a pulse energy of 11 µJ and pumping intensity of 0.62 GW/cm² (see Fig. 1). For 6.1 W of pump, we measured an average signal power of 1.16 W at 1.282 µm with pulse energy of 11.6 µJ, representing a power efficiency of ~19% and a photon conversion of ~23%. We also measured an average idler power of 154 mW with a pulse energy of 1.54 µJ at 6.204 µm, representing a power efficiency of ~2.5%, with a photon conversion efficiency as much as ~15% from the pump to idler. Beyond 6.1 W of pump, we observed the onset of lensing in the CSP crystal. By chopping the pump beam at different duty cycles (Fig. 1), we verified the origin of the saturation and lensing as thermal (see Fig. 1).

The measured autocorrelation of the signal is shown in Fig. 2, corresponding to a pulse duration of 6.36 ps, and a spectrum centered at 1.282 µm with a bandwidth of 8.5 nm, resulting in a time-bandwidth product of 9.3. The idler spectrum, shown in Fig. 3, is centered at 6.204 µm, and has a bandwidth of 122 nm. The dips in the spectrum correspond to absorption lines of water, as verified by the HITRAN molecular database. The signal and idler peak wavelengths of 1.282 µm and 6.204 µm are in close agreement with the calculated values of 1.286 µm and 6.180 µm for a pump wavelength of 1.0642 µm based on the Sellmeier equations for the material.

References